Devoir maison: Code CLE (Codage Large Echelle)

1 Le système binaire et la base 2

Exercice 1.1 1. Ecrire en base 10 le nombre qui s'écrit 1000101110 en base 2.

- 558
- 2. Ecrire en base 2 le nombre qui s'écrit 157 en base 10. Même question pour 10 en base 10.
 - $157 = 128 + 16 + 8 + 4 + 1 = 2^7 + 2^4 + 2^2 + 2^0$ s'écrit donc 10010101
- 3. Faire la table d'addition et la table de multiplication de la base 2. (Utiliser les tables suivantes)

+	0	1	2	3
0	0	1	10	11
1	1	10	11	100
2	10	11	100	101
3	11	100	101	110

et	×	0	1	2	3		
	0	0	0	0	0		
	1	0	1	10	11		
	2	0	10	100	110		
	3	0	11	110	1001		

4. Calculer en base 2 : 1101101 + 1011011 puis 101101 × 10011011. Donner alors les règles simples de l'addition et de la multiplication dans le système binaire.

	retenue		1	1	1	2	2	1	1	1	0	0	0	0	
-							1	0	0	1	1	0	1	1	
							×		1	0	1	1	0	1	
-							1	0	0	1	1	0	1	1	
× 10011011 =						0	0	0	0	0	0	0	0		-
					1	0	0	1	1	0	1	1			
				1	0	0	1	1	0	1	1				
			0	0	0	0	0	0	0	0					
	-	1	0	0	1	1	0	1	1						

101101 >

- 5. D'après ce qui précède, quelles sont les avantages et les inconvénients du système binaire ?
 - les calculs se font plus vite mais il y a beaucoup plus d'opération à faire. Dans le système informatique, les processeurs gerent des 0(éteint) et des 1 (allumé) à coup de 3 ghz ($3 \times 1024 \times 1024$

2 Le Code CLE

Exercice 2.1 1. (a) Ecrire en base 10 le nombre (7; 5; 3; 1)

- $(7;5;3;1)_{cl\acute{e}} = 2^7 + 2^5 + 2^3 + 2^1 = 170$
- (b) Ecrire en code CLE les nombres en base 10 suivants : 359 , 250 et 128.
 - $359 = 101100111 = 2^9 + 2^7 + 2^6 + 2^2 + 2^1 + 2^0 = (9, 7, 6, 2, 1, 0)_{clé}$
 - $250 = 11111010 = (7, 6, 5, 4, 3, 1)_{cl\acute{e}}$
 - $128 = 10000000 = (7)_{cl\acute{e}}$

- 2. Premières propriétés : nature du nombre
 - (a) A quoi reconnaît-on qu'un nombre écrit en code CLE est impair ?
 - il se termine par 0
 - (b) A quoi reconnaît-on qu'un nombre écrit en code CLE est pair ?
 - il ne se termine pas par 0
 - (c) A quoi reconnaît-on qu'un nombre écrit en code CLE est une puissance de 2 ?
 - le nombre n'a qu'un seul chiffre
- 3. Propriétés de l'addition
 - (a) Peut-on facilement additionner les nombres écrits en code CLE ?
 - facilement, non. Surement, oui!
 - (b) Ecrire en code CLE la somme $(15)_{cl\acute{e}} + (15)_{cl\acute{e}}$, puis plus généralement la somme $(n)_{cl\acute{e}} + (n)_{cl\acute{e}}$.
 - $(15)_{cl\acute{e}} + (15)_{cl\acute{e}} = 2^{15} + 2^{15} = 2 \times 2^{15} = 2^{16} = (16)_{cl\acute{e}}$
 - $(n)_{cl\acute{e}} + (n)_{cl\acute{e}} = (n+1)_{cl\acute{e}}$
 - (c) Ecrire en code CLE: $(11;5;3;0)_{cl\acute{e}} + (34;11;5;3)_{cl\acute{e}}$ puis $(18;16;8;4;3;2)_{cl\acute{e}} + (19;16;9;4;3;2;1)_{cl\acute{e}}$.
 - $(11; 5; 3; 0)_{cl\acute{e}} + (34; 11; 5; 3)_{cl\acute{e}} = (34, 12, 6, 4, 3, 0)$
 - $(18, 16, 8, 4, 3, 2)_{CLE} + (19, 16, 9, 4, 3, 2, 1)_{CLE} = (19, 18, 17, 9, 8, 5, 4, 3, 1)_{clé}$
 - (d) Peut-on énoncer une règle générale ?
 - on ajoute de droite à gauche, tout chiffre présent une fois dans l'un des 2 nombres est à marquer ds la somme. Si un chiffre est dans les 2 nombres, on ecrit son suivant ds la somme. Il faudra peut etre alors gerer une retenue.
- 4. Propriétés de la multiplication
 - (a) Peut-on facilement multiplier les nombres écrits en code CLE ?
 - je sais pas, je l'ai jamais fait mais j'ai pas peur!!!!
 - (b) Ecrire en code CLE le produit $(n)_{cl\acute{e}} \times (m)_{cl\acute{e}}$ où n et m sont deux entiers naturels.
 - $(n)_{cl\acute{e}} \times (m)_{cl\acute{e}} = 2^n \times 2^m = 2^{n+m} = (n+m)_{cl\acute{e}}$
 - (c) Ecrire en code CLE : $(5;2;0)_{cl\acute{e}} \times (4)_{cl\acute{e}}$ puis $(5;3)_{cl\acute{e}} \times (7;2;1)_{cl\acute{e}}$.

•

$$(5; 2; 0)_{cl\acute{e}} \times (4)_{cl\acute{e}} = (2^5 + 2^2 + 2^0) \times (2^4)$$

$$= 2^{5+4} + 2^{2+4} + 2^{0+4}$$

$$= (9; 6; 4)$$

•

$$(5;3)_{cl\acute{e}} \times (7;2;1)_{cl\acute{e}} = (5)_{cl\acute{e}} \times (7;2;1)_{cl\acute{e}} + (3)_{cl\acute{e}} \times (7;2;1)_{cl\acute{e}}$$

$$= (7+5;2+5;1+5)_{cl\acute{e}} + (7+3;2+3;1+3)_{cl\acute{e}}$$

$$= (12;7;6)_{cl\acute{e}} + (10;5;4)_{cl\acute{e}}$$

$$= (12;10;7;6;5;4)_{cl\acute{e}}$$

- (d) Peut-on énoncer une règle générale ?
 - le produit de deux nombres clé est constitué de toutes les sommes possibles entre les chiffres de l'un et les chiffres de l'autre des 2 nombres, si une même somme apparait 2 fois, on passe la retenue en ecrivant le suivant
- (e) Ecrire en code CLE le carré : $(12;4)^2_{cl\acute{e}}$

•

$$(12;4)_{cl\acute{e}}^{2} = (12;4)_{cl\acute{e}} \times (12;4)_{cl\acute{e}}$$

$$= (12)_{cl\acute{e}} \times (12;4)_{cl\acute{e}} + (4)_{cl\acute{e}} \times (12;4)_{cl\acute{e}}$$

$$= (24;16)_{cl\acute{e}} + (16;8)_{cl\acute{e}}$$

$$= (24;17;8)_{cl\acute{e}}$$

5. Exercice de synthèse :

- (a) Traduire $(123125256)_{10}$ et $(768648254)_{10}$ en code CLE.
 - $\bullet \ (123125256)_{10} = (11101010110110111111000001000)_2 = (26; 25; 24; 22; 20; 18; 17; 16; 15; 13; 12; 11; 10; 9; 3)_{cl\acute{e}}$
- (b) Trouver en code CLE le résultat du produit de ces deux nombres.

•

X	1	2	3	4	5	10	13	15	20	22	23	24	26	27	29	
3	4	5	6	7	8	13	16	18	23	25	26	27	29	30	32	
9	10	11	12	13	14	19	etc									
10																
11																
12																
13																
15																ouf!!
16																
17																
18																
20																
22																
24																
25																
26														53	55	

- (c) Le traduire en base 10.

web: http://ldb2007.free.fr